tetrahedron$82584$ - definition. What is tetrahedron$82584$
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

SHAPE FORMED BY INTERSECTING FOUR BALLS
Reuleaux Tetrahedron; Meissner body; Meissner's tetrahedron; Meissner bodies; Reuleaux-Tetrahedron
  • Reuleaux Tetrahedron

Heronian tetrahedron         
TETRAHEDRON WHOSE SIDE LENGTHS, FACE AREAS AND VOLUME ARE ALL RATIONAL NUMBERS
Heron tetrahedron; Perfect pyramid
A Heronian tetrahedron (also called a Heron tetrahedron or perfect pyramid) is a tetrahedron whose edge lengths, face areas and volume are all integers. The faces must therefore all be Heronian triangles.
Tetrahedron Computer Methodology         
SCHOLARLY JOURNAL
Tetrahedron Comput Methodol; Tetrahedron Comput. Methodol.
The Tetrahedron Computer Methodology was a short lived journal that was published by Pergamon Press (now Elsevier) to experiment with electronic submission of articles in the ChemText format, and the sharing source code to enable reproducibility. It was the first chemical journal to be published electronically, with issues distributed in print and on floppy disks.
Truncated triakis tetrahedron         
  • 160px
  • The full truncation
NEAR-MISS JOHNSON SOLID WITH 16 FACES
Hexakis truncated tetrahedron; Order-3 truncated triakis tetrahedron
The truncated triakis tetrahedron, or more precisely an order-6 truncated triakis tetrahedron, is a convex polyhedron with 16 faces: 4 sets of 3 pentagons arranged in a tetrahedral arrangement, with 4 hexagons in the gaps.

ويكيبيديا

Reuleaux tetrahedron

The Reuleaux tetrahedron is the intersection of four balls of radius s centered at the vertices of a regular tetrahedron with side length s. The spherical surface of the ball centered on each vertex passes through the other three vertices, which also form vertices of the Reuleaux tetrahedron. Thus the center of each ball is on the surfaces of the other three balls. The Reuleaux tetrahedron has the same face structure as a regular tetrahedron, but with curved faces: four vertices, and four curved faces, connected by six circular-arc edges.

This shape is defined and named by analogy to the Reuleaux triangle, a two-dimensional curve of constant width; both shapes are named after Franz Reuleaux, a 19th-century German engineer who did pioneering work on ways that machines translate one type of motion into another. One can find repeated claims in the mathematical literature that the Reuleaux tetrahedron is analogously a surface of constant width, but it is not true: the two midpoints of opposite edge arcs are separated by a larger distance,

( 3 2 2 ) s 1.0249 s . {\displaystyle \left({\sqrt {3}}-{\frac {\sqrt {2}}{2}}\right)\cdot s\approx 1.0249s.}